Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run.

نویسندگان

  • B P Abbott
  • R Abbott
  • T D Abbott
  • M R Abernathy
  • F Acernese
  • K Ackley
  • C Adams
  • T Adams
  • P Addesso
  • R X Adhikari
  • V B Adya
  • C Affeldt
  • M Agathos
  • K Agatsuma
  • N Aggarwal
  • O D Aguiar
  • L Aiello
  • A Ain
  • P Ajith
  • B Allen
  • A Allocca
  • P A Altin
  • A Ananyeva
  • S B Anderson
  • W G Anderson
  • S Appert
  • K Arai
  • M C Araya
  • J S Areeda
  • N Arnaud
  • K G Arun
  • S Ascenzi
  • G Ashton
  • M Ast
  • S M Aston
  • P Astone
  • P Aufmuth
  • C Aulbert
  • A Avila-Alvarez
  • S Babak
  • P Bacon
  • M K M Bader
  • P T Baker
  • F Baldaccini
  • G Ballardin
  • S W Ballmer
  • J C Barayoga
  • S E Barclay
  • B C Barish
  • D Barker
  • F Barone
  • B Barr
  • L Barsotti
  • M Barsuglia
  • D Barta
  • J Bartlett
  • I Bartos
  • R Bassiri
  • A Basti
  • J C Batch
  • C Baune
  • V Bavigadda
  • M Bazzan
  • C Beer
  • M Bejger
  • I Belahcene
  • M Belgin
  • A S Bell
  • B K Berger
  • G Bergmann
  • C P L Berry
  • D Bersanetti
  • A Bertolini
  • J Betzwieser
  • S Bhagwat
  • R Bhandare
  • I A Bilenko
  • G Billingsley
  • C R Billman
  • J Birch
  • R Birney
  • O Birnholtz
  • S Biscans
  • A S Biscoveanu
  • A Bisht
  • M Bitossi
  • C Biwer
  • M A Bizouard
  • J K Blackburn
  • J Blackman
  • C D Blair
  • D G Blair
  • R M Blair
  • S Bloemen
  • O Bock
  • M Boer
  • G Bogaert
  • A Bohe
  • F Bondu
  • R Bonnand
  • B A Boom
  • R Bork
  • V Boschi
  • S Bose
  • Y Bouffanais
  • A Bozzi
  • C Bradaschia
  • P R Brady
  • V B Braginsky
  • M Branchesi
  • J E Brau
  • T Briant
  • A Brillet
  • M Brinkmann
  • V Brisson
  • P Brockill
  • J E Broida
  • A F Brooks
  • D A Brown
  • D D Brown
  • N M Brown
  • S Brunett
  • C C Buchanan
  • A Buikema
  • T Bulik
  • H J Bulten
  • A Buonanno
  • D Buskulic
  • C Buy
  • R L Byer
  • M Cabero
  • L Cadonati
  • G Cagnoli
  • C Cahillane
  • J Calderón Bustillo
  • T A Callister
  • E Calloni
  • J B Camp
  • W Campbell
  • M Canepa
  • K C Cannon
  • H Cao
  • J Cao
  • C D Capano
  • E Capocasa
  • F Carbognani
  • S Caride
  • J Casanueva Diaz
  • C Casentini
  • S Caudill
  • M Cavaglià
  • F Cavalier
  • R Cavalieri
  • G Cella
  • C B Cepeda
  • L Cerboni Baiardi
  • G Cerretani
  • E Cesarini
  • S J Chamberlin
  • M Chan
  • S Chao
  • P Charlton
  • E Chassande-Mottin
  • B D Cheeseboro
  • H Y Chen
  • Y Chen
  • H-P Cheng
  • A Chincarini
  • A Chiummo
  • T Chmiel
  • H S Cho
  • M Cho
  • J H Chow
  • N Christensen
  • Q Chu
  • A J K Chua
  • S Chua
  • S Chung
  • G Ciani
  • F Clara
  • J A Clark
  • F Cleva
  • C Cocchieri
  • E Coccia
  • P-F Cohadon
  • A Colla
  • C G Collette
  • L Cominsky
  • M Constancio
  • L Conti
  • S J Cooper
  • T R Corbitt
  • N Cornish
  • A Corsi
  • S Cortese
  • C A Costa
  • E Coughlin
  • M W Coughlin
  • S B Coughlin
  • J-P Coulon
  • S T Countryman
  • P Couvares
  • P B Covas
  • E E Cowan
  • D M Coward
  • M J Cowart
  • D C Coyne
  • R Coyne
  • J D E Creighton
  • T D Creighton
  • J Cripe
  • S G Crowder
  • T J Cullen
  • A Cumming
  • L Cunningham
  • E Cuoco
  • T Dal Canton
  • S L Danilishin
  • S D'Antonio
  • K Danzmann
  • A Dasgupta
  • C F Da Silva Costa
  • V Dattilo
  • I Dave
  • M Davier
  • G S Davies
  • D Davis
  • E J Daw
  • B Day
  • R Day
  • S De
  • D DeBra
  • G Debreczeni
  • J Degallaix
  • M De Laurentis
  • S Deléglise
  • W Del Pozzo
  • T Denker
  • T Dent
  • V Dergachev
  • R De Rosa
  • R T DeRosa
  • R DeSalvo
  • J Devenson
  • R C Devine
  • S Dhurandhar
  • M C Díaz
  • L Di Fiore
  • M Di Giovanni
  • T Di Girolamo
  • A Di Lieto
  • S Di Pace
  • I Di Palma
  • A Di Virgilio
  • Z Doctor
  • V Dolique
  • F Donovan
  • K L Dooley
  • S Doravari
  • I Dorrington
  • R Douglas
  • M Dovale Álvarez
  • T P Downes
  • M Drago
  • R W P Drever
  • J C Driggers
  • Z Du
  • M Ducrot
  • S E Dwyer
  • T B Edo
  • M C Edwards
  • A Effler
  • H-B Eggenstein
  • P Ehrens
  • J Eichholz
  • S S Eikenberry
  • R C Essick
  • Z Etienne
  • T Etzel
  • M Evans
  • T M Evans
  • R Everett
  • M Factourovich
  • V Fafone
  • H Fair
  • S Fairhurst
  • X Fan
  • S Farinon
  • B Farr
  • W M Farr
  • E J Fauchon-Jones
  • M Favata
  • M Fays
  • H Fehrmann
  • M M Fejer
  • A Fernández Galiana
  • I Ferrante
  • E C Ferreira
  • F Ferrini
  • F Fidecaro
  • I Fiori
  • D Fiorucci
  • R P Fisher
  • R Flaminio
  • M Fletcher
  • H Fong
  • S S Forsyth
  • J-D Fournier
  • S Frasca
  • F Frasconi
  • Z Frei
  • A Freise
  • R Frey
  • V Frey
  • E M Fries
  • P Fritschel
  • V V Frolov
  • P Fulda
  • M Fyffe
  • H Gabbard
  • B U Gadre
  • S M Gaebel
  • J R Gair
  • L Gammaitoni
  • S G Gaonkar
  • F Garufi
  • G Gaur
  • V Gayathri
  • N Gehrels
  • G Gemme
  • E Genin
  • A Gennai
  • J George
  • L Gergely
  • V Germain
  • S Ghonge
  • Abhirup Ghosh
  • Archisman Ghosh
  • S Ghosh
  • J A Giaime
  • K D Giardina
  • A Giazotto
  • K Gill
  • A Glaefke
  • E Goetz
  • R Goetz
  • L Gondan
  • G González
  • J M Gonzalez Castro
  • A Gopakumar
  • M L Gorodetsky
  • S E Gossan
  • M Gosselin
  • R Gouaty
  • A Grado
  • C Graef
  • M Granata
  • A Grant
  • S Gras
  • C Gray
  • G Greco
  • A C Green
  • P Groot
  • H Grote
  • S Grunewald
  • G M Guidi
  • X Guo
  • A Gupta
  • M K Gupta
  • K E Gushwa
  • E K Gustafson
  • R Gustafson
  • J J Hacker
  • B R Hall
  • E D Hall
  • G Hammond
  • M Haney
  • M M Hanke
  • J Hanks
  • C Hanna
  • M D Hannam
  • J Hanson
  • T Hardwick
  • J Harms
  • G M Harry
  • I W Harry
  • M J Hart
  • M T Hartman
  • C-J Haster
  • K Haughian
  • J Healy
  • A Heidmann
  • M C Heintze
  • H Heitmann
  • P Hello
  • G Hemming
  • M Hendry
  • I S Heng
  • J Hennig
  • J Henry
  • A W Heptonstall
  • M Heurs
  • S Hild
  • D Hoak
  • D Hofman
  • K Holt
  • D E Holz
  • P Hopkins
  • J Hough
  • E A Houston
  • E J Howell
  • Y M Hu
  • E A Huerta
  • D Huet
  • B Hughey
  • S Husa
  • S H Huttner
  • T Huynh-Dinh
  • N Indik
  • D R Ingram
  • R Inta
  • H N Isa
  • J-M Isac
  • M Isi
  • T Isogai
  • B R Iyer
  • K Izumi
  • T Jacqmin
  • K Jani
  • P Jaranowski
  • S Jawahar
  • F Jiménez-Forteza
  • W W Johnson
  • D I Jones
  • R Jones
  • R J G Jonker
  • L Ju
  • J Junker
  • C V Kalaghatgi
  • V Kalogera
  • S Kandhasamy
  • G Kang
  • J B Kanner
  • S Karki
  • K S Karvinen
  • M Kasprzack
  • E Katsavounidis
  • W Katzman
  • S Kaufer
  • T Kaur
  • K Kawabe
  • F Kéfélian
  • D Keitel
  • D B Kelley
  • R Kennedy
  • J S Key
  • F Y Khalili
  • I Khan
  • S Khan
  • Z Khan
  • E A Khazanov
  • N Kijbunchoo
  • Chunglee Kim
  • J C Kim
  • Whansun Kim
  • W Kim
  • Y-M Kim
  • S J Kimbrell
  • E J King
  • P J King
  • R Kirchhoff
  • J S Kissel
  • B Klein
  • L Kleybolte
  • S Klimenko
  • P Koch
  • S M Koehlenbeck
  • S Koley
  • V Kondrashov
  • A Kontos
  • M Korobko
  • W Z Korth
  • I Kowalska
  • D B Kozak
  • C Krämer
  • V Kringel
  • A Królak
  • G Kuehn
  • P Kumar
  • R Kumar
  • L Kuo
  • A Kutynia
  • B D Lackey
  • M Landry
  • R N Lang
  • J Lange
  • B Lantz
  • R K Lanza
  • A Lartaux-Vollard
  • P D Lasky
چکیده

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : g r - qc / 0 41 20 22 v 1 4 D ec 2 00 4 First upper limit analysis and results from LIGO science data : stochastic background ‡

I describe analysis of correlations in the outputs of the three LIGO interferometers from LIGO's first science run, held over 17 days in August and September of 2002, and the resulting upper limit set on a stochastic background of gravitational waves. By searching for cross-correlations between the LIGO detectors in Livingston, LA and Hanford, WA, we are able to set a 90% confidence level upper...

متن کامل

A Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves

Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...

متن کامل

A radiometer for stochastic gravitational waves

The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the 3rd LIGO science Run (S3). Now I present a new method for obtaining directional upper limits that the LIGO Scientific Collaboration intends to use for future LIGO science runs and that essentially implements a gravitational wave r...

متن کامل

First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Hom...

متن کامل

Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 118 12  شماره 

صفحات  -

تاریخ انتشار 2017